Leber hereditary optic neuropathy and oxidative stress.

نویسندگان

  • Yehong Zhuo
  • Hongrong Luo
  • Kang Zhang
چکیده

R elatively little progress has been made in developing therapies for mitochondrial diseases in modern medicine as a result of the exquisite complexity of the structural proteins and pathways associated with mitochondrial functions and our incomplete understanding of pathophysiology (1). Leber hereditary optic neuropathy (LHON), in particular, provides a unique model for understanding molecular mechanism and testing promising treatments as a result of its characteristic sequential bilateral involvement and accessibility of retina as the target tissue within the eye. Lin et al. report the establishment of an Leber hereditary optic neuropathy (LHON) mouse model by introducing a mitochondrial DNA (mtDNA) mutation (2). LHON is a mitochondrial disorder with a maternal inheritance. It is characterized by degeneration of retinal ganglion cells and the optic nerve with sudden onset and usually severe bilateral loss of central vision, predominantly in young men (3). LHON has been associated with three primary mtDNA mutations: G3640A (4), G11778A (5), and T14484C (6), leading to missense mutations in NADH dehydrogenase. NADH dehydrogenase is a part of a large multienzyme complex I that generates ATP as a cellular energy source through electron transfer and oxidative phosphorylation (OXPHOS). The pathological feature of LHON is the smallcaliber axonal demyelination and loss, fiber swelling, and abnormal mitochondria. How these mutations in complex I elicit degeneration in the optic nerve is unclear. Furthermore, the relatively late onset, specific vulnerability in retinal ganglion cells (RGCs), and gender bias of LHON are not understood. Many pathogenetic mechanisms have been proposed, including complex I dysfunction with decreased ATP synthesis, elevated levels of oxidative stress, and impaired glutamate transport, all leading to RGC dysfunction and ultimately to apoptotic cell death. However, these hypotheses are based on research in cybrid cell lines using transmitochondrial technology (7–11). An animal model with a mutated complex I gene in the mitochondria genome is much needed for the validation of in vitro experiments and study of the pathophysiological mechanism in vivo. Lin et al. describe the creation of a mouse model of LHON (2). In particular, the authors introduced the P25L mutation in ND6, which causes LHON in humans, into mice, and show that oxidative stress rather than energy deficiency appears to be an important factor contributing to LHON in this animal model. Two major approaches have been tried to transmit genetically modified mtDNAs into the mouse germ line: (i) fusion of cytoplasts of enucleated cell with mutant mtDNA to undifferentiated mouse female stem cells and injection of the stem cell cybrids into mouse blastocysts; and (ii) fusion of cytoplasts from mutant cells directly to mouse single-cell embryos (12). Lin et al. (2) report a multiple-step process to produce a mtDNA ND6 G13997A P25L transgenic mouse by first isolating the desired mouse mtDNA mutation, in homoplasmic form in cultured mouse cells following random chemical mutagenesis, then fusing cytoplasts derived from these cells with embryonic stem (ES) cells (from which the mitochondrial genomes had been acutely removed by rhodamine treatment) and, finally generating viable mice from these cybrid ES cells. The phenotypic, biochemical, and molecular analysis of the mice reveal many features seen in patients with LHON: including reduced elecroretinographic response, small-fiber axonal swelling and loss of RGCs, and abnormal mitochondrial morphology. Thus, this mouse model should provide valuable insights into the pathophysiological basis of LHON. Little is known about progressive morphologic changes in LHON since postmortem eyes have been subjected to histopathologic examinations decades after the onset of disease. By this late stage, the optic nerves were found to be severely degenerated with demyelination and axonal loss in the retrobulbar space. The animal model established by Lin et al. (2) makes it possible to observe the progressive developmental process of this disease. The mutant mice exhibited agerelated loss of small-caliber optic nerve fibers, giving rise to swollen, demyelinated fibers that harbored increased numbers of highly abnormal mitochondria (2). Thus it may be possible to identify early markers of disease progression that could aid in diagnosis and predictive treatment. The mitochondria produce much of the cellular energy via a process of OXPHOS, in which ATP is coupled to protons across the inner mitochondrial membrane by means of the electron Fig. 1. ROS produced through the process of oxidative phosphorylation by the electron transport chain in mitochondria. NADH dehydrogenase mutations of complex I may increase the leaking of electrons from the chain, leading to increased accumulation of ROS, oxidative stress, and RGC death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mouse mtDNA mutant model of Leber hereditary optic neuropathy.

An animal model of Leber hereditary optic neuropathy (LHON) was produced by introducing the human optic atrophy mtDNA ND6 P25L mutation into the mouse. Mice with this mutation exhibited reduction in retinal function by elecroretinogram (ERG), age-related decline in central smaller caliber optic nerve fibers with sparing of larger peripheral fibers, neuronal accumulation of abnormal mitochondria...

متن کامل

Leber hereditary optic neuropathy: current perspectives

Leber hereditary optic neuropathy (LHON) is one of the most common inherited optic neuropathies causing bilateral central vision loss. The disorder results from point mutations in mitochondrial DNA and subsequent mitochondrial dysfunction. The primary cell type that is lost in LHON is the retinal ganglion cell, which is highly susceptible to disrupted ATP production and oxidative stress. Inheri...

متن کامل

Is there treatment for Leber hereditary optic neuropathy?

PURPOSE OF REVIEW To discuss recent advances in potential treatments for Leber hereditary optic neuropathy (LHON), a typically visually devastating hereditary optic neuropathy caused by mutations in the mitochondrial genome. RECENT FINDINGS Idebenone has been proposed as a means of bypassing defective complex I activity and a free radical scavenger to prevent oxidative damage. EPI-743 may hav...

متن کامل

Increased 8-hydroxy-2'-deoxyguanosine in leukocyte DNA in Leber's hereditary optic neuropathy.

PURPOSE This study was conducted to test the hypothesis that oxidative stress is involved in the pathogenesis of Leber's hereditary optic neuropathy (LHON). The level of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidized DNA base common in cells undergoing oxidative stress, was measured in leukocyte DNA from patients with LHON and normal control subjects. METHODS The 8-OHdG and deoxyguanosine ...

متن کامل

Therapeutic strategies for Leber's hereditary optic neuropathy: A current update.

Leber's hereditary optic neuropathy (LHON) is a rare mitochondrial retinopathy, caused by mutations in subunits of complex I of the respiratory chain, which leads to elevated levels of oxidative stress and an insufficient energy supply. This molecular pathology is thought to be responsible for the dysfunction and eventual apoptotic loss of retinal ganglion cells in the eye, which ultimately res...

متن کامل

Finger prick blood testing in Leber hereditary optic neuropathy.

Individuals from 33 unrelated Australian families with optic atrophy were screened for 10 different single base alterations in mitochondrial DNA (mtDNA) associated with Leber hereditary optic neuropathy (LHON) using direct polymerase chain reaction amplification of blood spots collected on Guthrie cards. This method using blood spots allows easily accessible screening for LHON mtDNA mutations w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 49  شماره 

صفحات  -

تاریخ انتشار 2012